new urbanists producing:

diamonds
in the sea of sprawl

www.doverkohl.com
breakthrough greenfield development

Rosemary Beach, Walton County, FL
breakthrough greenfield development

l’On, Mount Pleasant, SC
breakthrough greenfield development
breakthrough greenfield development

I’On, Mount Pleasant, SC
breakthrough greenfield development

Poundbury, Dorchester, UK
Studying Precedents
solar, water
At the same scale: Hudson Farm and Savannah, GA
Urban Structure
Neighborhoods
The Green Network
Primary Street + Secondary Streets + Alleys + Trails
Transect Zones
new urbanists getting:

noticed at last
for urban regeneration

www.doverkohl.com
resuming work on settled places
STREET NETWORK

PARKS AND OPEN SPACE

2000

Downtown Street Network (2000) - The downtown of 2000 had only one north/south connection.

Parks and Open Space (2000) - All land was privately owned except one small public park.

2010

Phases I and II Street Network (2010) - The project added five new north/south connection points into the existing system.

Phases I and II Parks and Open Space (2010) - The project adds over 11 acres of public green space to the CBD.
CHARACTER AND QUALITY OF BUILT PROJECT

Mixed-use building combining ground-floor retail, one and two level condominium units ranging from $200,000 to $1.1 million. Facade combines vernacular architecture with contemporary elements.
CHARACTER AND QUALITY OF BUILT PROJECT

Contemporary architectural styles bring new energy to the commercial core.
1992

South Miami

After improvements in 1994
new urbanists making:

shopping centre retrofits
new town centres
…and finally, the ‘CBDs’
reimagining ‘edge cities’

Downtown Kendall, Miami, FL
new centers
new centers
new centers

Glenwood Park, Atlanta, GA
in the metropolitan core
in the metropolitan core

Broad Street, Richmond VA
in the metropolitan core

Broad Street, Richmond VA
in the metropolitan core
in the metropolitan core

Marshall Street, Richmond VA
new urbanists insist on:

rethinking social housing

www.doverkohl.com
HOPE VI

Park Du Valle – Louisville, Kentucky – UDA

Before

After

Images – Urban Design Associates
HOPE VI

King Plaza – Philadelphia, Pennsylvania – Torti Gallas and Partners
HOPE VI

King Plaza – Philadelphia, Pennsylvania – Torti Gallas and Partners

Images – Torti Gallas and Partners
HOPE VI

Chicago
new urbanism reaching:

global tipping point?

www.doverkohl.com
the new global imperative?
the new global imperative?
the new global imperative?
the new global imperative?

Maljevik Bay, Montenegro
the new global imperative?

Maljevik Bay, Montenegro
the new global imperative?
Jeddah, Saudi Arabia

the new global imperative?
the new global imperative?
the new global imperative?

Sabkha, Thuwal, Saudi Arabia
the new global imperative?
a moment of considerable risk

Moscow
a moment of considerable risk
a moment of considerable risk

Moscow
new urbanists using:

form-based codes & the ‘transect’

www.doverkohl.com
the transect
Dealt only with 80 acre “greenfield” sites outside of downtown
downtown master plan
“transect map” for the SmartCode
‘miami 21’

A new code for the city of Miami, produced by DPZ
new urbanists:

responding to Katrina

www.doverkohl.com
‘mississippi renewal forum’

Responding on the Gulf Coast after Hurricane Katrina
‘mississippi renewal forum’

The charrette
Ocean Springs, Mississippi
Regional Vision Outreach and Poll

Question 1: What should Louisiana do about levees and wetlands?

Option A is the Louisiana Coastal Protection and Restoration Authority’s draft plan. It would increase levee protection around New Orleans and other urban areas, as well as in the wetlands. The plan would add “lines of defense” by using over-dunes and levees to restore damaged wetlands and barrier islands. This will slow—but not stop—wetland loss over the next 20 years.

Trade Offs

Protecting Our Cities

Protection for coastal cities is a priority. Currently, most of New Orleans’ levees. Other cities do not. The state’s proposed plan would increase protection for New Orleans and protect other cities against very severe storms. Areas of the coast without big cities would also receive some protection.

Proposed state plan. Increase levee protection in cities and across the coast; increase wetland restoration efforts

Question 2: What is the right mix of levees and coastal restoration?

Emphasize coastal restoration. Focus on wetlands and barrier islands, even if some areas lack levees

Emphasize levee building. Construct levees across the coast, even if this disrupts some wetland systems

Mix levees and coastal restoration. Provide levees for at-risk cities, also attempt to build out the coast

23,000 responses gathered through direct community outreach, TV broadcast, and multi-media campaign
South Louisiana

From Vision to Action: Sustainable Recovery and Smarter Growth

Physical plan shows:
- Reinvestment Areas
- New Growth Areas
- Transportation Systems
- Coastal Protection and Restoration Features
- Economic Development Zones

Calthorpe et al
new urbanists re-imagining:

the big picture

www.doverkohl.com
citywide plans

Fayetteville Arkansas

proposed transit lines
3,852,599 developable acres
3,048,058 2000 regional population

2.49 average household size
1,224,120 households

1.44 units per acre
849,350 developed acres

<table>
<thead>
<tr>
<th>County</th>
<th>Total Acreage</th>
<th>Developed Acres</th>
<th>Developed Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard</td>
<td>675,402</td>
<td>390,339</td>
<td>136,073</td>
</tr>
<tr>
<td>Lake</td>
<td>740,599</td>
<td>426,473</td>
<td>97,157</td>
</tr>
<tr>
<td>Orange</td>
<td>642,122</td>
<td>462,515</td>
<td>181,553</td>
</tr>
<tr>
<td>Osceola</td>
<td>964,015</td>
<td>649,425</td>
<td>59,873</td>
</tr>
<tr>
<td>Polk</td>
<td>1,287,102</td>
<td>960,475</td>
<td>175,783</td>
</tr>
<tr>
<td>Seminole</td>
<td>220,743</td>
<td>161,667</td>
<td>76,370</td>
</tr>
<tr>
<td>Volusia</td>
<td>782,644</td>
<td>520,904</td>
<td>122,541</td>
</tr>
<tr>
<td>Total</td>
<td>5,312,627</td>
<td>3,571,798</td>
<td>849,350</td>
</tr>
</tbody>
</table>

Source: www.myregion.org / University of Pennsylvania
3,852,599 developable acres
3,048,058 2000 regional population
3,860,600 2010 regional population
2.49 average household size
1,550,442 households
1.44 units per acre
1,076,696 developed acres

Source: www.myregion.org / University of Pennsylvania
trend model: 2020

3,852,599 developable acres
3,048,058 2000 regional population
4,607,100 2020 regional population
2.49 average household size
1,550,442 households
1.44 units per acre
1,284,890 developed acres

Source: www.myregion.org / University of Pennsylvania
trend model: 2030

3,852,599 developable acres
3,048,058 2000 regional population
5,290,800 2030 regional population
2.49 average household size
2,124,819 households
1.44 units per acre
1,475,569 developed acres

<table>
<thead>
<tr>
<th>County</th>
<th>2000 Total</th>
<th>2000 Developed</th>
<th>2000 Available</th>
<th>2000-2050 Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard</td>
<td>675,402</td>
<td>390,339</td>
<td>179,729</td>
<td>210,610</td>
</tr>
<tr>
<td>Lake</td>
<td>740,599</td>
<td>426,473</td>
<td>207,976</td>
<td>218,497</td>
</tr>
<tr>
<td>Orange</td>
<td>642,122</td>
<td>462,515</td>
<td>379,797</td>
<td>218,497</td>
</tr>
<tr>
<td>Osceola</td>
<td>964,015</td>
<td>649,425</td>
<td>379,797</td>
<td>218,497</td>
</tr>
<tr>
<td>Polk</td>
<td>1,287,102</td>
<td>960,475</td>
<td>253,611</td>
<td>706,864</td>
</tr>
<tr>
<td>Seminole</td>
<td>220,743</td>
<td>161,667</td>
<td>134,163</td>
<td>27,504</td>
</tr>
<tr>
<td>Volusia</td>
<td>782,644</td>
<td>520,904</td>
<td>183,448</td>
<td>337,456</td>
</tr>
<tr>
<td>Total</td>
<td>5,312,627</td>
<td>3,571,798</td>
<td>1,475,569</td>
<td>1,475,569</td>
</tr>
</tbody>
</table>

Source: www.myregion.org / University of Pennsylvania
trend model: 2040

3,852,599 developable acres

3,048,058 2000 regional population

6,199,988 2040 regional population

2.49 average household size

2,489,955 households

1.44 units per acre

1,729,136 developed acres

<table>
<thead>
<tr>
<th>County</th>
<th>Developable Acres</th>
<th>Developed Acres 2000</th>
<th>Developed Acres 2000-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevard</td>
<td>675,402</td>
<td>390,339</td>
<td>204,255</td>
</tr>
<tr>
<td>Lake</td>
<td>740,599</td>
<td>426,473</td>
<td>266,470</td>
</tr>
<tr>
<td>Orange</td>
<td>642,122</td>
<td>462,515</td>
<td>398,885</td>
</tr>
<tr>
<td>Osceola</td>
<td>964,015</td>
<td>649,425</td>
<td>161,647</td>
</tr>
<tr>
<td>Polk</td>
<td>1,287,102</td>
<td>960,475</td>
<td>313,566</td>
</tr>
<tr>
<td>Seminole</td>
<td>220,743</td>
<td>161,667</td>
<td>139,554</td>
</tr>
<tr>
<td>Volusia</td>
<td>782,644</td>
<td>520,904</td>
<td>244,759</td>
</tr>
<tr>
<td>Total</td>
<td>5,312,627</td>
<td>3,571,798</td>
<td>1,729,136</td>
</tr>
</tbody>
</table>

Source: www.myregion.org / University of Pennsylvania
trend model: 2050

3,852,599 developable acres
3,048,058 2000 regional population
7,217,534 2050 regional population
2.49 average household size
2,898,608 households
1.44 units per acre
2,012,923 developed acres

Source: www.myregion.org / University of Pennsylvania
“systems” approach

- Ocala Forest
- Network of Springs
- Ridgeland
- Dunes & Coastal Areas
- Large Contiguous Tracts

Source: www.myregion.org / University of Pennsylvania
land acquisition

2040-2050

Source: www.myregion.org / University of Pennsylvania
Source: www.myregion.org / University of Pennsylvania
2010

Trend

Alternative

Source: www.myregion.org / University of Pennsylvania
2020

Source: www.myregion.org / University of Pennsylvania
2030

Trend

Alternative

Source: www.myregion.org / University of Pennsylvania
Trend Alternative

Source: www.myregion.org / University of Pennsylvania
2050

Trend

Alternative

Source: www.myregion.org / University of Pennsylvania
Costs

<table>
<thead>
<tr>
<th>Cost</th>
<th>Acres</th>
<th>Cost/Acre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbanization costs for new development</td>
<td>420,410</td>
<td>$90,000</td>
<td>$37.8 Billion</td>
</tr>
<tr>
<td>Infrastructure costs for redevelopment</td>
<td>328,904</td>
<td>$20,000</td>
<td>$6.6 Billion</td>
</tr>
<tr>
<td>Conservation land acquisition</td>
<td>724,429</td>
<td>$25,000</td>
<td>$18.1 Billion</td>
</tr>
<tr>
<td>High-speed rail, transit, freight, ferry</td>
<td></td>
<td></td>
<td>$27.9 Billion</td>
</tr>
</tbody>
</table>

TOTAL COSTS OF ALTERNATIVE MODEL = $90.4 Billion
TOTAL COSTS OF “TREND” MODEL = $116.7 Billion

COST SAVINGS WITH ALTERNATIVE MODEL = $26.3 BILLION
for a far superior form of development

Source: www.myregion.org / University of Pennsylvania
Florida Trend 2060
TREND – 2050 (DEVELOPMENT AS USUAL)

Priority: Stick with current growth patterns. Most new buildings are single-story and single-family homes built on 1/2- to 3/4-acre lots.

Benefits: Big selection of homes and variety of locations in urban to rural settings.

Drawbacks: Gobbles up huge expanses of undeveloped land, depends heavily on building new roads, long commute times, spoils air and water quality.

Number crunching: Total land use: 2,144 square miles protected, 5.196 square miles for development. Transportation: more autos, buses, some bike trails; 46 miles of rail. Cost of new rail and roads: $22.7 billion.

Orlando, Florida
Choice A: Green Areas (Protecting Wild Places)

Benefits: Best guarantee for preserving drinking-water sources and ensuring survival of plants and wildlife. Offers extensive recreation in wilderness and park settings.

Drawbacks: Would cost tens of billions of dollars to buy and manage lands. Lands not purchased would be vulnerable to development. Not as optimal for air quality, commuting time and water conservation as the Centers and Corridors choices.

Number Crunching: Total land use: 1,627 square miles protected; 3,536 square miles for development. Transportation: more autos, buses, bike trails, 272 miles of rail. Cost of new roads and rail: $86.4 billion.

Choice B: Centers (Anti-Sprawl)

Priority: Compact communities where residents can walk, play and shop. Urban areas with fewer single-family homes. Increased mix of multifloor apartments and condos.

Benefits: Thriving communities with unique attractions, least reliance on cars and commuting, less air quality.

Drawbacks: Potential crime and congestion in densely populated communities, more roads built than under Green Areas and Corridors choices.

Number Crunching: Total land use: 4,198 square miles protected; 3,462 square miles for development. Transportation: more autos, buses, bike trails, 282 miles of rail. Cost of new roads and rail: $41.9 billion.

Choice C: Corridors (Transportation Friendly)

Priority: Cut back reliance on cars by significant expansion of rail, trolley and bus service.

Benefits: Transit routes and stops attract clusters of development, employment and commerce. Favor apartments and multifamily dwellings with single-family homes on smaller lots than in 2005. Paves less land than Green Areas and Centers choices and conserves the most water.

Drawbacks: Less natural ecosystem permanently protected than under Green Areas and Centers choices.

Number Crunching: Total land use: 3,816 square miles protected; 3,278 square miles for development. Transportation: more autos, buses, bike trails, 413 miles of rail. Cost of new roads and rail: $34.5 billion.
new urbanists have:

the convenient remedy

www.doverkohl.com
CO₂ and density

Source: LUTAQH final report, King County ORTP, 2005
CO$_2$ and connectivity

Source: LUTAQH final report, King County ORTP, 2005
CO$_2$ and convenient retail

Source: LUTAQH final report, King County ORTP, 2005
Metro Comparisons
Mortgage Foreclosure Rates
Q3 - 2007

Source: RealtyTrac, Center for Regional Analysis
Mortgage Foreclosure Rates by County – Nov 30, 2007

Foreclosures /10,000 units

- D.C.: 22
- Arlington: 27
- Alexandria: 34
- Fairfax: 34
- Montgomery: 53
- Frederick: 58
- Fauquier: 63
- Calvert: 75
- Charles: 100
- Spotsylvania: 107
- Prince George's: 127
- Stafford: 167
- Loudoun: 219
- Prince William: 262

MSA = 84

Source: RealtyTrac, Center for Regional Analysis
LEED-ND

PILOT VERSION

LEED for Neighborhood Development Rating System

<table>
<thead>
<tr>
<th>District Manager</th>
<th>Score</th>
<th>Demand Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of the District Manager</td>
<td>90</td>
<td>High</td>
</tr>
</tbody>
</table>

District Manager

- Dakota City
- Lincoln
- Omaha

Performance Targets

- Water Efficiency
- Energy Use Reduction
- Material and Resource Use
- Innovation in Design
- Indoor Environmental Quality
- Owning and Operating

District Manager Score

- Total Score: 90
- Demand Level: High

District Manager Rating

- LEED-ND Platinum

LEED For Neighborhood Development

Congress for the New Urbanism

- NRDC

Dover Kohl & Partners

- Town Planning
CNU XVI
AUSTIN TEXAS
NEW URBANISM AND THE EMERGING METROPOLIS
APRIL 3–6, 2008 SAVE THE DATE
ACNU08

2008 NATIONAL CONGRESS OF THE AUSTRALIAN COUNCIL FOR NEW URBANISM

Brisbane

6th - 9th February, 2008