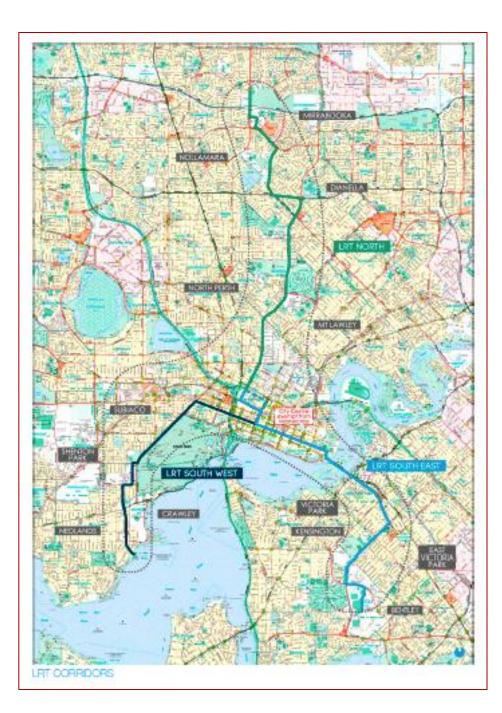
Australian Council For New Urbanism and PIA WA

Perth Light Rail TOD Master Class

Team Tasks and Scenarios

23rd September 2011

Wendy Morris Ecologically Sustainable Design esdwendy@netspace.net.au and ACNU Director


The Three LRT Corridors

North - to Mirrabooka

South West - to UWA

South East - To Curtin U

The combined SW and SE lines are also known as the Knowledge Arc

Corridor Investigations

- 1. Identify and locate key *destinations* along routes and along alternative route segments
- 2. Identify the key development or redevelopment opportunities along the route/s
- 3. Locate possible *stops*, and review/check *pedsheds* for each. Identify key *missing streets*/walkable connectivity gaps, and propose new street locations, or pedestrian links where a street is not practical. Prepare a pedshed/missing street corridor plan (possibly at 10,000 scale on street directory)

WALKABLE CATCHMENT - PEDSHEI

THE WALKABLE CATCHMENT (PEDSHED) TECHNIQUE

Validate catchments, semeitrose referred to as yeadoutis, sen rango beneving the scatal and sur within a firstinstee welding distance from any centre, or tan minutes on any major transport sing such as a malway statism, he centre could be a neighbourheod or town conte. The statistic eachiment is surply a technique for comparative valuation of how easy it is to nove through an arthun neuerate to get to and from those centres or facilities. These appeare the host estimates of welkability, and as such are a miscation of angerg efficiency.

Wilable calchment calculations are expressed as the actual area within a five-minut awaiing distance as a percentage of the theoretical fewer within a (ive-minute withing distance. The theoretical five-minute withing distance in theorem as a circle with a sudias of absord 400 m theorem ensured any pericular entert. This is as enso of 500 hz. When calculating a low-menuic weaking distance, the mation and it about 800 m, resulting is a circle area with an serie of 200 hz.

The higher the percentage, the better the walkability and there and a hanne the likely energy efficiency of any unbas area. A These good larges for a walkable calibration is to have 60 percent of the area within a five-minute walkang datasets, or lan adjustment of the energy of the second states and the second states are second states and the second states and the second states are second are secon

rocess for calculating walkable catchments

- On a scalad map three a circle of 400 m molice servard a neighbourhood or twen centre, and an 000 m molice circle around a soil station. When drawing the circleanound a station, show the inner 400 m moline circle as a three black line, and the 900 m moline circle as a broken black line.
- Starting from the centre, measure along the centre line of all available structs, to a distance of 400 m.
 Estimate the boundary of the lots writing a 400 m.
 - wilk, and colour this area. The convertion is to colour its area purple. This is the actual area from within thich a pedestrise would be able to access a centre tore the available struct would be able to access a centre

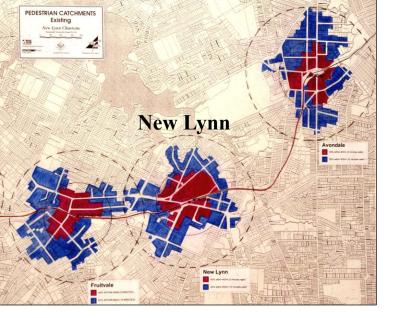
the case of stations, complete the bask seafined in number 3, advest, and complete the bask for a timeterior of the state of the state of the state of the states of the state of the state of the state interest within both a fire-strained work, and a tantinke work from the milway states. The convention the color the ten-minute working distance area light her.

660m Figure 2: A walkable neighbourhood around a neighbourhood centre and transit station

UVEAUX INTO HOUSE Cost to yake servers Online 201

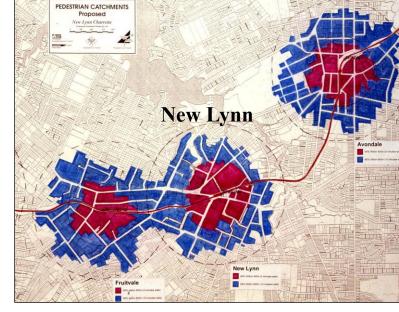
Using a grid of graded bectgers, (in 100 x 100 m

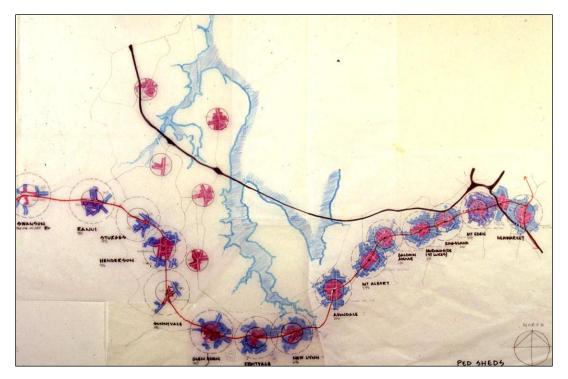
neighbourhood comite, fins is 31 percent, while in Figure 2, for a walkable neighbourhood around a moighbourhood comite and transit station the figure is 60 percent. Repeat the exercise for rail stations, using the heckere grid, and existing the areas accossible within a lanminate web (1000 m) of the 200 has area. In figure 2 holow for a walkable neighbourhood the figure is


S8 percent. Note that the walkable catchment should always count the areas of land used for dwallings but not include public open space ontained in the accordible area.

spares at the appropriate scale), calculate the approximate area in hectarts of the land coloured parple, and express this as a percentage of 50 ha. This

hows the actual area within 400 m of the centre as a percentage of the 50 hs circle. In figure 1, in the

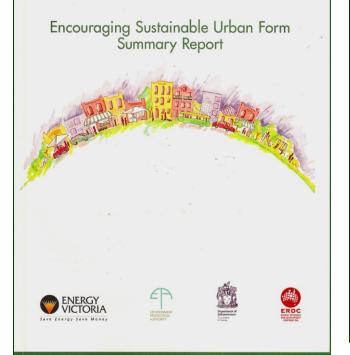

Fine tuning the calculation


There are practical influences on well-table excloses in such as abort cost branch parks or along polosities paths These should only be included where there is a high dags of narvellance, doing overlapped at worknowle, from adjusting development that freque the parks and where there is good playing. Similarly, the walkshie achievent may need to be projected where there is pose surveillance and results are presented to be image.



Auckland -Waitakere Line

Existing and proposed pedsheds



New Lynn - missing streets plan

Corridor Investigations (Cont)

- 4. Estimate relative *urban densities* along the corridor (within 500m of route or 800m of likely stops). Use H, M and L where indicatively L = R20 or less, M = R20-R40, and H = >R40 or equivalent. Try to estimate *residents and workers (and students)* per hectare, not just residents. Use aerials, street directories and local knowledge. Note Melbourne UV analysis.
- 5. Identify key stops/TOD precincts where significant intensification is required, and those where relatively limited change is needed... *priorities for action*...
- 6. Identify key *bus route interchange* opportunities along LRT corridors

URBAN VILLAGES PROJECT

Urban Villages Targets for Melbourne

Table 3.5 Variable targets for different categories of urban villages

	DESIGN TARGET											
Type of centre	Pedestrian catchment	Residential density (residents per hectare) (1)	Worker density (workers per hectare) (1)	Premises per hectare (1)								
Inner neighbourhood centre	65%	50	12	25								
Inner town centre	65%	50	. 34	33								
Inner regional centre	65%	50	100	40								
Middle neighbourhood centre	60%	40	7	21								
Middle town centre	60%	47	23	26								
Middle regional centre	60%	40	80	30								
Outer neighbourhood centre	60%	40	5	17								
Outer town centre	60%	40	15	20								
Outer regional centre	60%	30	60	20								

Note (1) Residential, worker and premises density figures relate to gross density ie. they refer to density calculated across the total site area.

Common targets	for all urban villages
Public space	20 per cent of total site area
Public recreation space	5 per cent of total site area
Area within 200 metres of recreation space	100 per cent of total site area
verage House Energy Pating for new dwellings	At least 4 stars (11 HERS points)

ALBERT PARK

Type of Urban		
Village	Inner	Town
Year	1993	2006
Residential		
dwellings	1055	1138
Shops	74	73
Offices	68	73
Industry	0	0
Public		
community		
services	8	8
Establishments/		
ha (target=33)	24	26
Avno.		
residents/ha		
(target=50)	46	50
Av no. workers		
/ha (target=34)	15	15
Total km of		
street in 400m	-	-
radius	7	7
No. of street	25	25
intersections	35	35
Public open	6	6
space (%)	0	0
Daily train/light rail		
train/light rail	N/A	700
usage	N/A	700

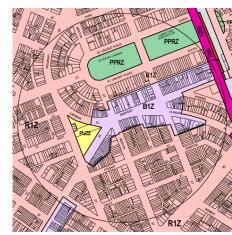
Description

Albert Park is an Inner Town urban village located on a tram route 3 km from the city and 1km form the beach. The urban fabric consists mainly of one and two storey terrace houses with rear laneway access. Most car parking is on street, accommodated in the typically wide streets. Retailing consists of small scale individual terrace shops, with housing, retail or storage above. A significant number of offices are located in the village and take advantage of complementary services. A wide range of community facilities also exist within the village. The busier roads are located around the edge of the village, which is bordered to the North by St Vincents Gardens. This, combined with its excellent urban form, adaptable architecture and range of infrastructure means that it works well as a local neighbourhood and shopping centre.

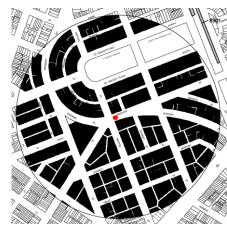
Changes

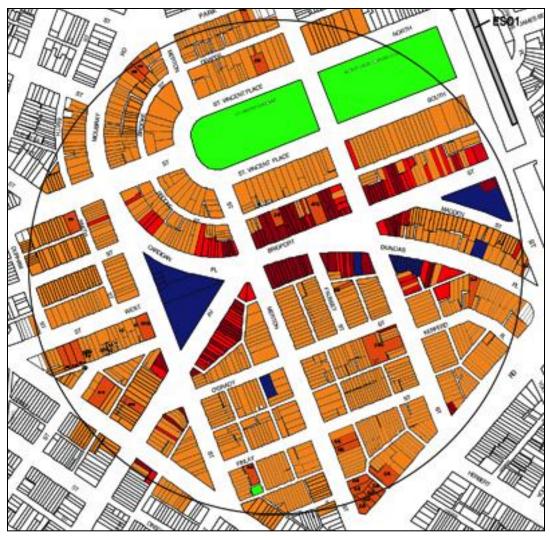
The number of shops has remained static, while there is a slight increase in offices. Bridport St, Cardigan Pl and Victoria Av have remained the main commercial area, with a slight variation in where the shops and offices are now situated. A few more shops have been established along Victoria Av, while offices are concentrated in Cardigan Pl and the eastern end of Bridport St. The growth in residences from 1,055 to 1,138 can be attributed to the increase in multi-storey establishments consisting mainly of double storey duplexes that maintain the narrow terrace character of the area.

Public Transport Access


The 400m radius is centred on the outbound tram stop on Bridport St within the retail hub. The St Kilda Light Rail and a bus service run past the edge of this circle, providing a high quality level of service to and from the locality.

Density Targets


Albert Park has achieved the residential density target, but will need further intensification of shops and offices to achieve the desired worker and establishment densities.


Traditional terrace house

Planning Scheme

Street and block structure, with main transit stop in red

Groundfloor Landuse 2006

Change in Groundfloor landuse from 1993

Multistorey landuse 2006. Changes since 1993 depicted in bold outline

bold outline

New duplex house

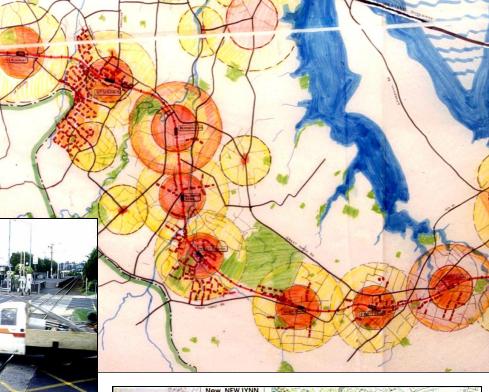
Typical garage loft extension.

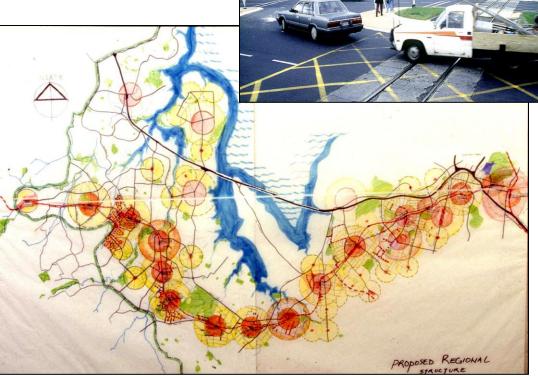
Bridport St near tram stop

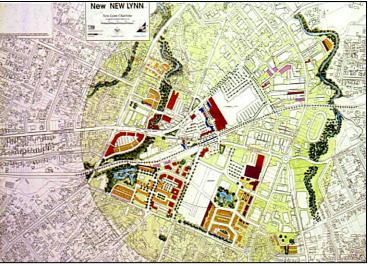
Comparison of 1993 and 2006 UV data

Melbourne Urban Village TODs

*


Urban Villages	Clifton	Nth Fitzroy	Albert Park		Armadale		Canterbury		Mont Albert		Parkdale		St Albans		Yarraville		East Malvern		Av. for 2006
Year	2006	2006	1993	2006	1993	2006	1993	2006	1993	2006	1993	2006	1993	2006	1993	2006	1993	2006	2006
Total area (ha)	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	
Residential dwellings	788	1406	1055	1138	890	1372	513	463	505	601	673	723	328	304	885	985	270	292	807
Shops	71	60	74	73	106	137	88	126	42	35	56	47	127	162	98	98	20	26	84
Offices	36	45	68	73	13	29	37	43	18	12	16	24	58	73	29	35	8	12	38
Industry	0	0	0	0	0	0	0	0	0	0	2	0	3	2	1	0	2	2	0
Public Community Services	10	20	8	8	8	9	18	15	4	4	12	11	16	19		16	4	7	12
Total Estabs	874	1531	1205	1292	1017	1548	656	643	569	655	759	812	532	560	1072	1134	301	332	938
Estabs/ ha	17	30	24	26	20	31	13	13	11	13	15	16	11	11	21	23	6	7	19
Workers	570	585	745	765	625	865	700	905	310	245	415	400	990	1235	670	695	150	200	647
Residents	1734	3093	2321	2504	1958	3018	1129	1019	1111	1322	1481	1591	722	669	1947	2167	594	642	1775
Total residents & workers	2304	3678	3066	3269	2583	3883	1829	1924	1421	1567	1896	1991	1712	1904	2617	2862	744	842	2421
No. residents/ha	35	62	46	50	39	60	23	20	22	26	30	32	14	13	39	43	12	13	35
No. workers/ha	11	12	15	15	13	17	14	18	6	5	8	8	20	25	13	14	3	4	13
Ratio of dwellings to workplaces	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.4	0.1	0.1	0.1	0.1	0.6	0.8	0.2	0.2	0.1	0.2	0.2
Ratio of residents to workers	0.3	0.2	0.3	0.3	0.3	0.3	0.6	0.9	0.3	0.2	0.3	0.3	1.4	1.8	0.3	0.3	0.3	0.3	
Total no. lots	663	1358	1112	1112	788	788	612	612	435	434	582	640	455	456	970	972	296	296	733
Total no. multistorey lots	210	325	251	383	228	299	103	156	52	109	87	209	40	54	52	184	22	64	199
% multistorey lots	32%	24%	23%	34%	29%	38%	17%	26%	12%	25%	15%	33%	9%	12%	5%	19%	7%	22%	27%
Km of street in 400m radius	6	11	7	7	6	6	8	8	7	7	8	8	7	7	9	9	4	4	7
No. of street Intersections	18	48	35	35	32	32	24	24	31	31	24	24	24	24	54	54	16	16	31
% public open space	15	15	6	6	1	1	8	8	2	2	2	2	16	16	3	3	32	32	10
Daily train/light rail usage	N/A	N/A	N/A	700		1388		852		791		760		3097		1502		1317	1301
Ratio of trips to residents & workers	N/A	N/A	N/A	0.2		0.4		0.4		0.5		0.4		1.6		0.5		1.6	1


A 400m radius = 50 ha... therefore Albert Park, with 3269 R+W = 65 R+W/Ha


Corridor Investigations (Cont)

- 7. Test small-scale intensification options for typical single dwelling residential areas along the LRT route, especially near stops. Eg. Options for consolidation of 2, 4, 6 lots??? Also test options where new street links are required, and where back fence 'frontages' should be fixed. How far back from the LRT route should the intensification go? (Parramatta proposed only half a block)
- 8. Review all green space along each route. Appoint a POS 'heretic'!!! Identify 'win-win' redevelopment opportunities to improve POS whist adding developed edges. Long term future of golf courses??
- 9. Consolidate all investigations into a Corridor Plan, showing future structure, and documenting key opportunities and constraints.

Auckland -Waitakere Line -Proposed regional structure

New Lynn Concept Plan

Key Precinct and Site Investigations

Each Team should agree which areas are priority, and develop up detailed concept plans for each precinct or site.

The Northern LRT Team should review and evaluate the current Government route detail plan, and propose alternative solutions where appropriate.

AND FINALLY... PRIORITIES!!!

Identify the three to five key initiatives on each route that are critical to progressing the LRT line towards fruition

Where relevant, identify the 3-5 major constraints or challenges to progressing the LRT line.

Architecture of Place Team

Team to focus on site on LRT SW sites, particularly around UWA.

Design urbanism for one or more sites at detailed scale.

Identify and illustrate appropriate denser mixed use building typologies in perspectives and 3D modelling.

Detail up architectural responses derived both of Perth's contextural architecture and of quality walkable public realm/street frontage detailing.

Develop up key principles for a possible architectural approach to the LRT corridors to ensure the built outcomes contribute to the ongoing appeal of the corridor intensification process.

Design Session 1 - 3.15pm to 6pm Pin up from 5.50pm... I will label boards with Team nos

Report Back - 6pm - 7pm

ENJOY!!!